Мир объектов Excel 2000



              

Формальная постановка задачи


Введем обозначения:

  • n - число этапов, на которых принимаются решения о вложении денег в тот или иной проект. В нашем примере такие решения принимаются каждый месяц и потому n= 6.
  • m - число проектов. В примере m =4.
  • Pi - проекты, где i = 1 …m.
  • Ri - величина риска проекта Pi.
  • qi - число этапов проекта Pi.
  • Si j - сумма денег, вкладываемая в проект Pi на j -м этапе. Si j - это и есть наши искомые переменные, значения которых предстоит найти в ходе решения задачи. Заметьте, что здесь i = 1 ... m, j = 1 ... qi
  • N - общее число искомых переменных, которое определяется формулой N =
    qi
  • K - первоначальный капитал фонда.
  • Rc- допустимый средний риск.
  • Tc -допустимая средняя длительность проекта.

Перейдем теперь к формулировке оптимизационной задачи:

Необходимо минимизировать первоначальный капитал фонда

K => min

при выполнении четырех групп ограничений:

Ограничения баланса: Bi = 0 i = 1…n

Ограничения среднего риска: Ri <= Rc i = 1…n

Ограничения средней длительности проекта: Ti <= Tc i = 1…n

Ограничения на положительность значений: Si j >= 0 i = 1 ... n, j = 1 ... qi

Первую группу ограничений составляют ежемесячные ограничения баланса. Все имеющиеся к началу месяца сбережения следует вложить в те или иные проекты. Деньги " в чулке" хранить нельзя. Поэтому сумма денег, полученных в конце месяца с учетом дивидендов и выплаты долговых обязательств, равна сумме денег, вкладываемых в инвестиционные проекты на следующем месяце. Конечно, чтобы такая возможность всегда существовала, необходимо, чтобы среди проектов был "безопасный" проект с наименьшим риском и минимальным сроком вложения. Параметры такого проекта должны быть заведомо меньше задаваемых значений среднего риска и средней продолжительности. Существование такого проекта гарантирует существование решения задачи для любых исходных данных. В нашем примере это первый проект. Понятно, что таким проектом может считаться вложение денег в Сбербанк.

Отметим еще краевые балансовые ограничения. В начале первого месяца сумма вложений в инвестиционные проекты равна начальному капиталу фонда. В конце последнего месяца сумма полученных денег равна сумме, которую следует выплатить для погашения долга. Эти ограничения вытекают из предназначения временного целевого фонда.

Я не стану выписать балансовые ограничения в явном виде, поскольку, с одной стороны, они достаточно понятны, с другой стороны их формальная запись для общего случая довольно громоздка из-за динамического характера решаемой задачи. Ограничусь тем, что приведу краевые уравнения баланса и уравнение для одного из месяцев. Вот как выглядит уравнение баланса на начальном этапе:

K = S1 1 + S2 1 + S3 1 + S4 1




Содержание  Назад  Вперед