Мир объектов Excel 2000


              

Функция ЛИНЕЙН


В общем случае решает задачу линейной множественной регрессии, вычисляя по методу наименьших квадратов вектор оценок параметров. Используется описанная нами выше модель:

Y = X*a + E

Синтаксис вызова этой функции:

ЛИНЕЙН (Известные_значения_Y; Известные_значения_X; Конст; Статистика)

Параметры функции имеют следующий смысл:

  • Известные_значения_Y - задает вектор измерений.
  • Известные_значения_X - в общем случае матрица значений наблюдаемых параметров. Если речь идет о временном тренде, то элементы X задают моменты времени, в которые проводились измерения. Можно опустить X, если значения элементов составляют последовательность 1, 2, 3 и т. д.
  • Булев параметр "Конст" равен Истина (True), если в линейной записи модели присутствует дополнительно свободный член b, не входящий в вектор параметров a.
  • Булев параметр "Статистика" равен Истина (True), если наряду с оценками параметров вычисляются и статистические характеристики.
  • Результат вычислений этой функции - массив, в общем случае состоящий из 5 строк и n+1 столбцов, где n - это размерность вектора искомых параметров a.
  • an,    an-1, …  a1,  b
  • ?n,    ?n-1, …  ?1,  ?b
  • R*R,   ?Y
  • F,             df
  • Ssreg, Ssresid
  • В первой строке идут оценки параметров a и свободного члена b. Оценки идут в обратном порядке, начиная с an. Они и определяют линию регрессии, позволяя рассчитать прогнозируемое значение Y в любой точке, где заданы значения наблюдаемых параметров.
  • В следующей строке идут среднеквадратические отклонения этих оценок. Выше мы показали, как вычислить полную корреляционную матрицу оценок. Среднеквадратические отклонения являются диагональными элементами этой матрицы. Точнее, на диагонали стоят их квадраты - дисперсии DI = ?I * ?I. Значения ?I позволяют построить доверительный интервал для соответствующих оценок и вынести суждение об их значимости в линейной модели. Как вычисляются эти значения в Excel, нам осталось непонятно, так как алгоритм не описан. Можно лишь заметить, что применяемый алгоритм не всегда корректен с позиций классической математической статистики. Приведем пример. Пусть оцениваются, как часто бывает, два параметра a и b (Y = at +b). Пусть выполнены всего два измерения - Y1 и Y2. Тогда, каковы ни были ошибки в измерениях, линия регрессии пройдет через две наблюденные точки. Excel скажет, что оши




    Содержание  Назад  Вперед