Мир объектов Excel 2000


              

Это полиномиальное относительно времени соотношение


Это полиномиальное относительно времени соотношение остается линейным по отношению к неизвестным параметрам. Для простоты перейдем к матричной форме записи соотношений:

Y = X*a + E

Здесь Y - вектор измерений, a - вектор параметров, E - вектор ошибок, X - прямоугольная матрица, элементы которой зависят от t и не зависят от параметров a. Для полиномиальной зависимости нетрудно выписать явный вид ее элементов:

X = || ti j.|| i= 1…n; j = 0..m;

Число строк этой матрицы определяется моментами времени t1, t2, … tn, в которые производились измерения, а количество столбцов определяется степенью полинома. Квадратичный функционал F(a) в матричной форме имеет вид:

F(a) = (Y - X*a)T R-1 (Y - X*a)

Продолжая обобщать постановку задачи, мы ввели корреляционную матрицу R ошибок измерений. В частном случае, когда отсутствует корреляция ошибок измерений и дисперсия их единична, матрица R превращается в единичную матрицу. Другой важный частный случай - диагональный, когда корреляция отсутствует, но дисперсия ошибки меняется от измерения к измерению. Величину, обратную к дисперсии -1/?2 , можно рассматривать как вес измерения. Так что введение этой матрицы позволяет приписать разный вес измерениям, придавая, например, больший вес последним измерениям.

Все эти обобщения не нарушают возможности получения аналитического решения. Вектор оценок a, минимизирующий квадратичный функционал F(a), определяется по формуле:

a = I-1 XT R-1 Y

Здесь I - информационная матрица Фишера, вычисляемая из соотношения:

I = XT R-1 X

Наряду с вектором оценок нетрудно получить и его статистические характеристики. Поскольку оценки являются несмещенными, для полного знания распределения вектора оценок достаточно знать его корреляционную матрицу. В данном случае она является обратной к матрице Фишера.

Ra = I-1

Даже если исходные измерения независимы, между оценками параметров может возникать корреляция. Правда, на практике чаще всего используют только значения их дисперсий.

До сих пор мы рассматривали временные ряды, и в наших измерениях присутствовал только один наблюдаемый параметр - время. В регрессионном анализе обычной ситуацией является проведение измерений, когда в каждой точке фиксируется несколько наблюдаемых параметров, влияющих на измеряемое значение. Применительно к задаче спроса такими параметрами могут быть, например, уровень текущей рекламы, количество конкурирующих товаров, погодные условия. Так что линейная относительно неизвестных параметров модель спроса в общем случае может быть такой:

Yi = a0 + a1 x1i + a2x2i+ … + amxmi + Ei


Содержание  Назад  Вперед